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Summary

Many critical perceptual judgments, from telling whether
fruit is ripe to determining whether the ground is slippery,

involve estimating the material properties of surfaces. Very
little is known about how the brain recognizes materials,

even though the problem is likely as important for survival
as navigating or recognizing objects. Though previous

research has focused nearly exclusively on the properties
of static images [1–16], recent evidence suggests that

motion may affect the appearance of surface material
[17–19]. However, what kind of information motion conveys

and how this information may be used by the brain is still

unknown. Here, we identify three motion cues that the brain
could rely on to distinguish between matte and shiny

surfaces. We show that these motion measurements can
override static cues, leading to dramatic changes in

perceived material depending on the image motion charac-
teristics. A classifier algorithm based on these cues

correctly predicts both successes and some striking failures
of human material perception. Together these results reveal

a previously unknown use for optic flow in the perception of
surface material properties.

Results

Behavioral Results
When asked to visually assess the appearance of glossy
objects, observers commonly rotate them back and forth in
their hands to watch the highlights slide over the surface.
This suggests that useful information may be carried by the
characteristic way that features move during object motion
or changes in viewpoint. Whereas pigmentation patterns are
usually rigidly attached to the surface, the position of reflected
features depends on the relationship between viewer, object,
and light source [20–22]. This causes them to move relative
to the surface whenever the object or viewer moves.

To test whether image motion conveys surface material, we
devised a computer graphics procedure for rigidly attaching
reflected patterns to the surface of an object during object or
*Correspondence: katja@bilkent.edu.tr
viewer motion, thus bringing static and motion cues to shini-
ness into conflict. For any given frame in the motion sequence,
the distorted patterns on the surface are consistent with spec-
ular reflections of the surrounding environment, and the object
appears shiny. However, when viewed as a sequence, the
patterns move with the surface, as if they were painted on
instead of being reflections. The result is the distinct impres-
sion that the surface is not shiny and homogeneous but rather
matte and patterned (see Figure 1A, see also Movie S1, panels
1,1 and 1,2 available online).
We used movies similar to these as stimuli in an experiment

to test whether human vision exploits motion cues to distin-
guish between shiny and matte materials (Figure 1B). In each
trial, subjects were presented with two objects rotating back
and forth, one with standard specular motion (‘‘normal’’ reflec-
tions) and the other with reflections that were rigidly attached
to the surface (‘‘sticky’’ reflections). The task was to report
which of the two objects appeared to be more shiny. Note
that corresponding frames (except the first ones) of sticky
and shiny movies appeared similar but were not identical.
Thus, to confirm that all nonmotion cues were balanced, in
one tenth of trials, the stimuli consisted of single static frames
taken at random from the shiny and sticky motion sequences.
For the moving stimuli, subjects reported objects with normal
specular motion to appear shinier than those with sticky
reflections (Figure 1C). By contrast, they were at chance
performance for no-motion trials, indicating that motion cues
caused the differences in appearance between normal and
sticky. Thus, the visual system does indeed rely on the charac-
teristic motion patterns of features to determine whether
a surface is shiny or matte.

Computational Results

Given the behavioral results, we next wanted to understand
what kind of information from material-specific image motion
is available for the estimation of surface properties. The
motion patterns produced by specular reflections depend
crucially on surface curvature. Reflected features tend to
‘‘rush’’ across low curvature regions and ‘‘stick’’ to points of
high curvature [20, 23], thus the resulting optic flow consists
of a multitude of motion directions and image velocities. In
contrast, matte, textured objects produce optic flow that is
rather homogenous in direction and velocity (except for rota-
tions around the viewing axis). Optic flow patterns may thus
contain diagnostic features about an object’s surfacematerial.
Computational analysis of the motion patterns of shiny and

sticky objects used in the behavioral experiment yielded three
optic flow statistics, which we call coverage, divergence, and
3D shape reliability. These statistical measures have percep-
tual interpretations and are predictive of surface material
class, each generalizing to complex objects and arbitrary rota-
tion axes, and each capturing a different aspect of the motion
pattern (see Supplemental Information). Each measure or cue
is briefly introduced in the following section and illustrated in
Figure 2.
Within a few frames of image motion, specular features that

accelerate toward high curvature points become ‘‘absorbed’’
as a result of the compression at these locations [7].
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Figure 1. Multiple Interpretations of Visual Input and Behavioral Experiment

(A) Consider the object on the left. What does it appear to be made of? Most

observers agree that it looks like a uniform, lustrous material reflecting

a complex environment (center). However the image could also have been

generated by carefully painting the pattern onto the surface withmatte paint

(right). This is an example of the ambiguity faced by the visual system when

inferring the material composition of objects: what appears to be a shiny

surface might in fact be matte, but the converse is also possible. Despite

the ambiguity, we rarely experience any difficulty distinguishing between

diffuse and specular surfaces in daily life.

(B) Stimuli in the behavioral experiment.

(C) Grand average across all objects, illuminations and repetitions from ten

naive subjects. In the experimental condition (red bars) observers almost

always perceived the ‘‘normal’’ stimulus as shinier. Without motion (control

condition, blue bars), subjects were close to chance performance (dotted

line). Error bars indicate standard error.

Also see Movie S1, panels (1,1) and (1,2).
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Additionally, ‘‘feature genesis’’ occurs at local concavities on
the object’s surface. The resulting distortion of appearance
during object motion impairs the trackability of these features
by optic flowmechanisms. When the image features change in
appearance too rapidly, they cannot be tracked for sufficient
time to estimate their motion. The proportion of features that
are untrackable indicates shininess and is captured by a cue
we call ‘‘coverage.’’

For features that are trackable, appearance distortion can
broadly be categorized into expansions and contractions.
Specular features tend to move toward convexities (contrac-
tions) and conversely, radiate out from concavities (expan-
sions). Moreover, as a specular feature approaches a local
convexity its velocity reduces, whereas features closer to the
trough of a concavity move faster than those further away.
This local interplay of image motion direction and magnitude
creates a potentially useful cue for the visual system to use
when judging surface material—especially as contractions
are usually not generated by rotating matte, textured objects.
It has been shown that the first order structure of a flow
field, such as that generated by the trajectories of specular
features, can be decomposed into rotation, divergence, and
two deformation components [24]. ‘‘Divergence’’ quantifies
the strength of sinks (concavities) and sources (convexities)
that cause expansions and contractions in the flow field. These
inhomogeneities are particularly dramatic near the interface
between regions of low and high 3D curvature (for specular
surfaces).
The appearance distortions that occur on specular objects

tend to adversely affect structure from motion (SfM) estima-
tion—the computation of 3D shape from optic flow. However,
the very fact that 3D rigid motion computations may be prob-
lematic for specular surfaces may itself serve as an important
source of information for discriminating shiny andmatte mate-
rials. Robust computation of 3D shape depends on tracking
image features that correspond to surface points—i.e., that
are stuck to the surface. The optic flowvector for such a feature
is constrained to lie along an epipolar line. Because specular
flow fields have features that slip relative to the surface, they
exhibit epipolar deviations [25]. We measured how consis-
tently the optic flow vectors are constrained by epipolar geom-
etry and call thismeasure ‘‘3D shape reliability.’’ Note that even
with low values of 3D shape reliability, it may still be possible to
reliably compute 3D shape from SfM and other cues. In other
words, the fact that a moving object appears shiny does not
predict that we should not be able to see its shape. The impor-
tant point for the current argument is that the presence of optic
flow inconsistent with 3D rigid motion signals shininess. See
Experimental Procedures for further details on the computa-
tion of each measure.
Inspection of the means and standard errors of the three

cues reveals that they were individually highly diagnostic of
material type for each object in the behavioral set (Figure 3,
and Figure 4A, row a). Next we trained linear classifiers [26]
on each of the flow measures for surface material class on
eight 15-frame image sequences taken from the behavioral
experiment (Figure 1B). We classified 20 stimuli samples
(10 shiny, 10 sticky; Figure 4A, row a), taken at random from
the stimulus set, according to surface material. We then
qualitatively compared classification results with ground truth
(Figure 4A) as well as with observers’ performance in the
behavioral experiment (Figure 4B). The former comparison
highlights the relation between physical properties andmotion
cues, whereas the latter provides an indication of the predict-
ability of the cues for human surface material perception.
For the behavioral stimuli, the classifiers were perfectly
successful in predicting ground truth as well as observers’
performance (Figures 4A and 4B, row a, dark green squares).
We next trained a classifier on a combination of all three
cues [27] (on the same subset of stimuli from the behavioral
experiment described above). Not surprisingly, the combined
classifier was also in perfect agreement with observer
performance.
A good model of perception should predict errors as well as

successes. To make a stronger test of the proposed cues, we
measured their values across a number of additional condi-
tions, including arbitrary rotation axes and environment
maps (Figure 4, row b), a more complex shape (Figure 4, row
c), a simpler shape (rowd), newmotions, including translations
(row d), and accelerations (row i), a matte material with self-
shadowing (row g), and a glossy material (row h). As an addi-
tional test, we included two motion-based surface material
illusions (rows e and f, and Movie S2 panels 1,1–2,2) in which
human observers perceive the wrong material property [28].
As above, we testedwhether our cues can predict ground truth
and whether they parallel observers’ judgments. Fourteen
naive observers viewed test movies (every movie once) in
a random order on a laptop computer and indicated whether



Figure 2. Illustration of the Three Flow Features

(A) A complex shiny object (left) and a matte, textured object (right) are rotating about the horizontal axis, front downwards toward the observer.

(B) This rotation gives rise to distinct flow pattern for each surface material. The shiny object exhibits amarked amount of appearance distortion, i.e., feature

absorption and genesis, whereas the appearance of the matte object does not change substantially.

(C) Three flow features arise from this characteristic appearance distortion: (1) coverage, (2) divergence, and (3) 3D shape reliability. See Supplemental

Information for computational details of these measures, as well as Figure S1 for a more detailed illustration of the coverage feature.
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a given stimulus appeared shiny or matte. For each test movie
we computed the percentage of being seen as shiny.

For several test stimuli (compare pairs ofmeans in Figure 4A,
rows c, d, and i) we find a considerable lessoning of the differ-
ences between shiny and matte for individual cues. When
comparing the results of the individual and combined-
measure classifiers (the training sets were the same as above)
to ground truth and observers’ performance we find the
following to be true: (1) Our measures capture observers’
performance rather than the physical reflectance properties
of the stimuli (compare the proportion of reddish and greenish
cells for illusory stimuli in rows e and f in Figure 4A and Fig-
ure 4B). In other words, our classifier yielded the same
‘‘perceptual errors’’ as our observers. (2) Whereas each of
the three individual-cue classifiers show instances of total
failure in predicting observers percepts (see red squares in
Figure 4B), results of the combined-cue classifier, with the
exception of one test (row i, discussed in the Supplemental
Information) closely mimicked observers’ performance (Fig-
ure 4B, last two columns). Snapshots from the tested movies
as well as images of the corresponding computed measures
are shown in Figure S2.
Discussion

Visual estimation of material properties is a difficult task,
because the light arriving at the eye provides ambiguous infor-
mation about the surface reflectance properties, mesoscale
structure, object shape, and incident illumination (Figure 1A).
Despite this, humans and also some nonhuman animals
[29–31] effortlessly discriminate between different types of
surface material, yet little is known about what visual cues
the brain can extract from the retinal images to estimate the
‘‘stuff’’ [32, 33] a surface is made of. Recent research sug-
gested that motion may affect the appearance of surface
material [17–19]. However, an explanation of this phenomenon
has been missing. Here, we devised procedures that allowed
us to single out motion from static cues. We found that motion
can override static cues to surface properties, and that in
general, optic flow characteristics play a significant role in
the estimation of surface material qualities such as shininess.
The proposed flow properties may be extracted by hypo-

thetical, yet plausible cortical mechanisms, such as those
suggested by [34] for the computation of local divergence.
Coverage relates to correspondence, i.e., the ability of the



Figure 3. Classification Results

(A) A sample stimulus as well as a partial, close-up view on which classification results for the behavioral stimulus set are illustrated.

(B) White arrows indicate regions in which flow vectors could be computed over a distance of three frames. Classification results for divergence

and coverage are shown to the right.

(C) Same as (B) but for matte objects.

(D) Pixels classified as inliers are those that show a flow pattern consistent with a 3D rigid motion.

(E) Same as (D) but for matte objects.
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visual system to keep track of visual features across frames (or
a certain time interval). Previous research by Todd [35] has
shown that observers’ judgments of 3D rigid motions were
detrimentally affected by a decreased correspondence indi-
cating that the visual system may indeed be partially sensitive
to this motion cue. Interestingly, Todd noted that at interme-
diate levels of correspondence, a rigid surface appeared to
be ‘‘scintillating’’ [35]. 3D shape reliability might be extracted
by neuralmechanisms involved in the estimation of both shape
and motion from optic flow [36, 37].

It is important to note, however, that optical flow is probably
not sufficient on its own to induce a percept of a matte or shiny
surface. For example, patterns of moving dots with given
optical flow statistics do not look like specular or matte
surfaces. The image velocities must have meaningful spatial
organizations to be interpreted as a moving surface with
certain material properties (see also [11, 13, 14] for shape-
dependent static cues to surface glossiness). We have shown
in previous work [28] that for simple objects (e.g., cuboidal
shapes) with distinct high and low curvature regions, rushing
and sticking (slow) specular features give rise to bimodal
distributions of image velocity. Bimodality in the image
velocity histogram may thus signal the presence of a shiny
surface, because matte, textured objects tend to produce
unimodal velocity distributions. However, bimodality essen-
tially vanishes as the specular object’s shape becomes more
complex or when the object rotates around the viewing axis;
yet under these conditions, objects appear just as shiny
(also see Figure S2).

Because the image of a specular object is simply a distorted
reflection of the surrounding world, the properties of the
reflected scene can also affect how useful optical flow is for
material perception. Classification of matte and shiny surfaces
requires that there are sufficiently dense features in the
reflected environment and that these features are oriented
such that they produce visible motion across the object. In
degenerate cases where the motion of the object is parallel
to elongated features in the environment (Movie S2, panels
3,1 and 3,2), the reflected patterns produce no motion energy
in the image, and therefore, statistics computed on the optical
flow are not reliable. Under these conditions, objects appear
matte to most observers. In addition to sufficient structure in
the environment, the specular object must also exhibit suffi-
cient variation in 3D curvature to be perceived as shiny (also
see [28] and Hurlbert et al. [38] for the link between specular
feature velocity and perceived 3D curvature).
A natural next question to ask is how the three cues are

related to one another and whether all three cues are needed
for surface material estimation. We argue that these cues
have independent origins and thus can be inconsistent with
one another, and in support of this notion we find that the three
cues are only weakly correlated with one another (see Supple-
mental Information). In addition, we found that there are cases
when one or two of the cues can fail to predict performance
(Figure 4B). Also see Supplemental Information.
Although the three motion cues we identified may not be the

only ones that the brain could extract, we have demonstrated
that the flow mechanisms proposed here generalize across
many viewing conditions and even successfully predict
motion-based perceptual surface material illusions. Thus,
they capture aspects of the image motion that are relevant for
the estimation of surface properties, they can override static



Figure 4. Cue Performances

This figure illustrates cue values, cue variability, and cue generalizability across a broad range of testing conditions.

(A) For test movies (a)–(i) we show numerical averages as well as corresponding standard errors for each measure (columns 1–6). Sample frames as well as

sample images of each measure of the respective test scenarios can be found in Figure S2. We further qualitatively (by color) indicate the amount of agree-

ment between the linear discriminant analysis (LDC) of the individual (columns 1–6) and the combinedmeasures (last 2 columns) with the ground truth of the

stimuli (shiny or matte).

(B) Same as (A) except that classifier performance is compared to observers’ percepts. We find that no single cue correctly predicts observers’ judgments

under all conditions. Thus we argue that observers may be using a combination of motion cues when estimating surface material. Rows (a)–(i) show the

following: (a) Samples taken from the behavioral set. (b) A shape moving about an arbitrary rotation axis and rendered with an arbitrary environment

map (Movie S1, panels 2,1 and 2,2). (c) Novel 3D specular shape with arbitrary rotation axis, rotation speed, and environment map (Movie S1, panel 3,1).

(d) A cube rotating and translating (Movie S1, panel 3,2). (e) A motion-based perceptual surface material illusion (Movie S2, panel 1,1). The specular object

appearsmatte tomost observers. This is not surprising because the optic flow generated by the ellipsoid lacks themultitude ofmotion directions and image

velocities characteristic for shiny surfaces and is instead more similar to the homogeneous optic flow produced by matte, textured objects. (f) Nonrigidly

deforming matte objects. Interestingly, these have a somewhat specular appearance (Movie S2, panel 1,2). (g) A crumpled sheet of matte, textured paper

rotating about its vertical axis has moving self shadows (Movie S2, panel 2,1), which is problematic for fitting a 3D surface model (3D shape reliability) and

may thus have a chance of being classified as specular. This was included to test the robustness of our flowmeasures. (h) A glossy object rotating about the

horizontal axis (Movie S2, panel 2,2). (i) The same object as in (b) is shown but with an accelerated motion. This manipulation affects the coverage measure

but leaves the other two intact. The combined classifier results weigh in favor of the coverage feature. This is not surprising because this measure has the

largest effect size (also see Supplemental Information).

Snapshots from the tested movies as well as images of the corresponding computed measures are shown in Figure S2. Test movies are shown in Movie S1

and Movie S2.
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cues to surface material, and suggest hypothetical mecha-
nisms to extract them from retinal motion sequences. Taken
together, our findings imply a much more general role of optic
flow in visual perception than previously believed [39–41].

Experimental Procedures

Behavioral Experiments

Stimuli

Stimuli in the behavioral experiment consisted of three different shapes

each rotating back and forth 15 degrees (deg) around six different axes

(three cardinal, three random) illuminated under four light probes (three

from the Debevec database [http://ict.debevec.org/wdebevec/Probes/],

one random 1/f noise). Shapes consisted of a unit geosphere primitive
perturbed with five sine waves of different orientations and wavelengths.

We chose these irregular blob-like objects to be (1) novel (i.e., unfamiliar

to the observers) so that observers would not be affected by preexisting

shape-material associations and (2) sufficiently complex to contain

rich optical flow patterns that could drive motion-based material classifica-

tion. Additionally, the shapes were designed to have no clearly defined

principal axis, because in other experiments we have found interactions

between shape and perceived axis of rotation. Images were rendered using

Radiance [42].

Task

Ten naive subjects viewed stimuli, roughly 10 deg visual angle across, on

a laptop, and responded via the keyboard. On each trial they viewed

‘‘sticky’’ and ‘‘normal’’ versions of a given stimulus side by side and indi-

cated which appeared more shiny. Trials were shown in random order,

and the entire set was shown ten times.

http://ict.debevec.org/~debevec/Probes/
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Analysis

We computed the percentage of trials on which the ‘‘normal’’ stimulus was

judged shinier than the ‘‘sticky’’ stimulus for the objects in motion (experi-

mental condition) and for static frames taken at random from the ‘‘normal’’

and ‘‘sticky’’ movies (control condition). Subjects almost always perceived

the ‘‘normal’’ stimulus as shinier in the motion condition. Without motion,

subjects were close to chance performance (Figure 1C).

The second behavioral experiment is described in themain text. The stim-

ulus set consisted of a range of different surface structures, including both

familiar (e.g., duck) and unfamiliar (e.g., blobs) objects, as well as perceptual

material illusions.

Computational Analysis

The training set consisted of eight 15-frame image sequences taken from

the behavioral experiment. Optic flow was computed using the algorithm

of [43] (linearity threshold: 0.01; minimum number of valid component

velocities: 7).

Coverage

Image features (pixels) need to be tracked between frames in order to

assign a velocity vector. However, for long sequences or rapidly deforming

regions, the corresponding features cannot be found and thus flow vectors

cannot be computed. Coverage quantifies the ratio of pixels with computed

flow vectors to the number of all pixels. Coverage change is the reduction in

coverage due to lengthening of the frame sequence (from 2 to 3) quantifying

the amount of trackability. We use the percent decrease in coverage to

classify stimuli as matte or shiny.

Divergence

Divergence captures the strength of concavities and convexities that cause

expansions and contractions in the flow field. This feature was computed as

the number of pixels with divergence values above 2 (high divergence)

divided by the total pixels with nonzero divergence values. This feature

was computed over a 2-frame distance.

3D Shape Reliability

Estimation of 3D rigid motion from optic flow is problematic for specular

flow fields since these exhibit epipolar deviations [24]. This poses a chal-

lenge for SfM. Corresponding points across image frames that were consis-

tent with 3D motion, adhering to epipolar constraints, were termed ‘‘inliers’’

and were computed as follows. First, in order to denoise the data, we

retained only flow vectors (computed over a 2-frame distance) that had

a magnitude > 0.25 3 SD, where SD is the standard deviation of the magni-

tudes of all flow vectors in a given frame. The obtained flow vectors were

then randomly separated into batches each containing 3,000 motion

vectors. Hundred random sample consensus [44] iterations with 8 point

direct linear transform fundamental matrix estimation [45] were then

applied to each batch. Vectors with Sampson error [46] less than 1 were

accepted as inliers. The ratio of inliers to outliers denotes the 3D shape reli-

ability feature.

PRTools Matlab toolbox [27] was used to train a normal density based

linear classifier (no regularization) on the combined flow features for surface

material class (ground truth). Classification was performed on nontraining

stimuli only. The Matlab code of this analysis, together with a sample

matte and shiny data set can be downloaded from http://www.bilkent.

edu.tr/wkatja/Smovies/.

Supplemental Information

Supplemental Information includes two figures, Supplemental Experimental

Procedures, and two movies and can be found with this article online at

doi:10.1016/j.cub.2011.10.036.
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